Abschlussbericht zum Vorhaben "Bestimmung der Schwermetallkonzentrationen in generativen Pflanzenteilen nach P-Düngung in Form von P-Rezyklaten aus Klärschlamm"

Diedrich Steffens, Maximilian Adami, Ann-Kathrin Nimführ und Jakob Santner Institut für Pflanzenernährung, Justus-Liebig-Universität, Heinrich Buff-Ring 26-32, 35392 Gießen

1 Einleitung und Problemstellung

Im Institut für Pflanzenernährung wurde die Ertragswirksamkeit von Phosphor in verschiedenen P-Recyclingprodukten aus Klärschlamm in Feldund Für Versuche Containerversuchen untersucht. diese standen ein Doppelsuperphosphat (38% P₂O₅), produziert aus hessischen Klärschlammaschen, sowie eine Klärschlammasche aus dem Euphore-Verfahren (15,2% P₂O₅) zur Verfügung. Die Euphore-Asche stammt aus der Machbarkeitsstudie der Stadt Schlitz.

Die Prüfung der P-Verfügbarkeit von Doppelsuperphosphat aus Klärschlammasche für landwirtschaftliche Kulturpflanzen erfolgte in dreijährigen Feldversuchen auf fünf verschiedenen Standorten in Hessen, wobei ein Standort nach den Vorgaben des organischen Landbaus bewirtschaftet wurde. Die Feldversuche umfassten die nachstehenden Versuchsvarianten:

Variante 1: Kontrolle, keine Phosphordüngung

Variante 2: 20 kg P/ha in Form von Doppelsuperphosphat aus Klärschlammasche

Variante 3: 20 kg P/ha in Form von Tripelsuperphosphat

Variante 4: 40 kg P/ha in Form von Doppelsuperphosphat aus Klärschlammasche

Variante 5: 40 kg P/ha in Form von Tripelsuperphosphat

Auf dem Standort, der nach den Vorgaben des organischen Landbaus bewirtschaftet wird, wurde anstelle von Tripelsuperphosphat in den Varianten 3 und 5, ein weicherdiges Rohphosphat (Hyperphos) gedüngt.

Die Containerversuche, die auf der Gefäßversuchsstation des Instituts für Pflanzenernährung der Justus-Liebig-Universität Gießen durchgeführt wurden, wurden mit den nachstehenden Versuchsvarianten angelegt:

1

Variante 1: Kontrolle, keine Phosphordüngung

Variante 2: 20 kg P/ha in Form von Doppelsuperphosphat aus Klärschlammasche Variante 3: 20 kg P/ha in Form von Tripelsuperphosphat Variante 4: 20 kg P/ha in Form von weicherdigem Rohphosphat Variante 5: 20 kg P/ha in Form von Euphore-Klärschlamm Variante 6: 40 kg P/ha in Form von Doppelsuperphosphat aus Klärschlammasche Variante 7: 40 kg P/ha in Form von Tripelsuperphosphat Variante 8: 40 kg P/ha in Form von weicherdigem Rohphosphat

Variante 9: 40 kg P/ha in Form von Euphore-Klärschlamm

Jede der hier aufgeführten Varianten wurde in vierfacher biologischer Wiederholung angelegt, um die Versuchsdaten gemäß den Vorgaben einer Varianzanalyse auszuwerten. Demzufolge umfasste ein Feldversuchsstandort 20 Versuchsparzellen und der Containerversuch 36 Container. Als Versuchsboden diente ein P-armer Unterboden einer Braunerde, der zusätzlich mit Quarzsand 1:1 gemischt wurde. Der pH-Wert dieses Boden/Sand Gemisches betrug 6,5 in 0,01 M CaCl₂. Wichtige Eigenschaften dieses Bodens sind in der Tabelle 2 aufgeführt.

In dem Versuchszeitraum 2020 bis 2022 wurden insgesamt drei Ernten mit verschiedenen landwirtschaftlichen Kulturen erzielt. Im Containerversuch wurden in 2020 Körnermais, in 2021 Winterweizen und in 2022 Sommergerste angebaut. In den Feldversuchen wurden auf den fünf Standorten ebenfalls Winterweizen, Sommergerste und Körnerweizen sowie Mais, Wintergerste und Winterraps angebaut. In diesen Versuchen wurde gezeigt, dass die geprüften P-Rezyklate eine den mineralischen Düngemitteln vergleichbare Ertragswirksamkeit aufwiesen.

Offen ist aber die Frage, ob durch die Düngung der P-Rezyklate die Schwermetallkonzentration in den essbaren Pflanzenteilen erhöht ist, so dass eine Gefahr für Tier und Mensch bestehen könnte. Um auf diese Frage eine Antwort geben zu können, ist eine Analyse der Pflanzen, die mit den P-Rezyklaten aus

2

Klärschlammasche gedüngt wurden, auf deren Schwermetallkonzentrationen erforderlich. Aus diesem Grund wurden alle aus den Versuchen vorliegenden Kornund Samenproben aus den dreijährigen P-Düngungsversuchen auf deren Schwermetallkonzentrationen im Institut für Pflanzenernährung der Justus-Liebig-Universität Gießen untersucht. Die im Containerversuch angefallenen Strohproben von Körnermais, Winterweizen und Sommergerste wurden ebenfalls auf deren Schwermetallkonzentrationen untersucht. Dabei wurden die nachstehenden Elemente in den Pflanzenproben analysiert:

As, Cd, Cr, Cu, Mn, Ni, Pb, Tl, Zn,

Auf die Bestimmung der Hg-Konzentration wurde verzichtet, da die in den Feld- und Containerversuchen gedüngte P-Rezyklate keine Hg-Kontamination aufweisen.

2 Material und Methoden

Wie bereits erwähnt stammten die Pflanzenproben aus den P-Düngungsversuchen, die auf fünf hessischen Ackerstandorten und in einem Containerversuch mit P-Rezyklaten und mineralischen P-Düngemitteln (TSP und Hyperphos) durchgeführt wurden.

Für die Untersuchungen standen aus den Feldversuchen 300 Pflanzenproben zur Verfügung (5 Standorte × 20 Parzellen × 3 Versuchsjahre = 300 Proben) und aus den Containerversuchen 108 Pflanzenproben (9 Varianten × 4 Wiederholungen × 3 Versuchsjahre = 108 Proben). Insgesamt standen dann 408 Pflanzenproben bereit. Ferner wurden dann noch die 108 Strohproben aus dem Containerversuch untersucht, so dass in diesem Projekt insgesamt 516 Pflanzenproben analysiert wurden.

Versuchsstandorte

In der Tabelle 1 sind die Textur, die pH-Werte sowie das CAL-extrahierbare P der Feldversuchsstandorte dargestellt. Die pH-Werte schwankten zwischen 5,30 und 7,10 und die Konzentrationen des CAL-extrahierbaren P reichen von 17,04 bis 3,16 mg P/100 g Boden.

Tabelle 1: Textur, pH-Wert sowie CAL-extrahierbares Phosphat der fünf Feldversuchsstandorte

	Dauborn	Stangenrod	Villmar	Langgöns	Münchholz- hausen
	stark toniger	mittel toniger	schluffiger	stark toniger	stark toniger
Textur	Schluff	Schluff	Ton	Schluff	Schluff
Sand	6,2%	5,4%	1,6%	5,2%	10,2%
Schluff	72,0%	78,1%	71,9%	72,8%	71,4%
Ton	21,8%	16,5%	26,5%	22,0%	18,4%
pH-wert	6,10	5,70	5,90	7,10	5,30
CAL-P mg/					
100g Boden	7,14	9,04	3,75	17,04	3,16

Tabelle 2: Textur, pH-Wert sowie CAL-extrahierbares Phosphat des Bodens für den Containerversuch

Versuchsboden Kleinlinden 2019					
Textur stark sandiger Lehm					
Sand	52,90%				
Schluff	28,20%				
Ton	18,90%				
pH-Wert	5,55				
CAL-P	1,02 mg/100g Boden				

Wie bereits erwähnt, erfolgte die P-Düngung in einer Höhe von 20- bzw. 40 kg P/ha. Nach dem Auflaufen von Mais zeigte sich auf dem relativ P armen Boden/Sand-Gemisch im Containerversuch, dass diese Mengen für den Mais in dem sehr kalten Frühjahr 2020 nicht ausreichend waren. Dieser P-Mangel wurde durch eine zusätzliche P-Düngung in Höhe von 20 kg P/ha in jeder Variante und Stufe mit dem entsprechenden Düngemittel versucht zu beheben. In der Kontrollvariante wurden 20 kg P/ha in Form von Calciumdihydrogenphosphat appliziert.

Analysen

Es sei nur kurz erwähnt, dass nach der Ernteermittlung bezogen auf eine Fläche, die geernteten Pflanzenteile (Körner, Samen und Stroh) bei 105°C getrocknet wurden und anschließend auf < 1 mm gemahlen worden sind.

Dieses feine Pflanzenmaterial wurde für die Bestimmung der Schwermetallkonzentrationen in eine Aufschlussröhre aus Teflon eingewogen, mit konzentrierter Salpetersäure versetzt, um dann in einer Mikrowellendruck-Aufschlussapparatur aufgeschlossen zu werden. Nach dem Erkalten wurde die Aufschlusslösung filtriert und mit einer verdünnten supra-reinen Salpetersäure, welche Standard Rhosium als internen enthält. versetzt. um dann die Schwermetallkonzentrationen mittels einer ICP-MS zu messen. Diese Messungen erfolgten an der BOKU Wien.

5

2 Ergebnisse und Diskussion

2.1 Düngemittel

In der Tabelle 3 sind wichtige Eigenschaften der in diesem Projekt geprüften Düngemittel und Rezyklate dargestellt. In der Tabelle 3a, s. Seite 26, sind zusätzlich noch die Eigenschaften der für die Herstellung von Recphos verwendeten Klärschlammaschen aufgeführt. Auf die in der Tabelle 3 dargestellten Ergebnisse wird in der Schwermetallbilanz für den Containerversuch zurückgegriffen. Bei dem Euphore-Produkt wird die Nickelkonzentration gemäß der Düngemittelverordnung überschritten.

Tabelle 3: Gesamt P-Konzentration sowie die Schwermetallkonzentrationen der in diesem Projekt verwendeten Düngemittel sowie die P-Rezyklate Recphos und Euphore

	Hyper phosphat	TSP	Recphos	Euphore	Kennzeichnung DüMV	Grenzwert, DüMV	Grenzwert, EU- Düngeproduktev.
Phosphor, % P	13,7	18,8	15,4	5,7			
Mangan, mg/kg TM	15,0	33,6	599,0	690,0			
Zinn, mg/kg TM	0,3	2,2	70,8	1,1			
Zink, mg kg/TM	399,0	558,0	1570,0	904,0			1500
Kupfer, mg kg/TM	17,8	34,1	673,0	618,0			600
Arsen, mg kg/TM	6,2	5,1	21,4	2,4	20,0	40,0	40,0
Blei, mg kg/TM	3,6	8,6	68,2	1,8	100,0	150,0	120,0
Chrom, mg/kg TM	152,0	121,0	69,0	170,ß	300		Cr VI: 2
Cadmium, mg /kg TM	16,6 52,9 mg Cd/kg P ₂ O ₅	24,1 55,9 mg Cd/kg P ₂ O ₅	1,5	0,025	1,0	1,5 50 mg Cd/kg P ₂ O ₅	60 mg Cd/kg P ₂ O ₅
Quecksilber, mg/kg TM	0,03	0,02	0,14	0,01	0,5	1,0	1,0
Nickel, mg/kg TM	15,9	38,5	55,3	93,2	40,0	80,0	50,0
Thallium, mg/kg TM	0,81	0,57	0,28	0,025	0,5	1,0	
Uran, mg/kg TM	105,0	170,0	6,34	4,86			

2.2 Containerexperiment

In der Tabelle 4 ist die Ertragswirksamkeit der P-Düngung sowie der verwendeten Düngemittel und P-Rezyklate dargestellt. Im ersten Versuchsjahr zeigte die P-Düngung in allen Varianten eine Wirkung auf den Stroh- und Kornertrag von Mais. Die höchsten Erträge wurden in der hohen P-Stufe in der Recphos- und TSP-Variante erzielt. Deutlich geringere Erträge wurden in den Euphore- gefolgt von den Hyperphos-Varianten gemessen. In den darauffolgenden Jahren war keine signifikante Ertragswirksamkeit der P-Düngung in allen Varianten gegenüber der Kontroll-Variante zu beobachten, da wir in 2020 auch in der Kontroll-Variante zu Mais 20 kg P/ha in Form von Calciumdihydrogen-phosphat gedüngt haben. Diese Menge und die Nachlieferung aus dem Boden dürften für eine ausreichende P-Ernährung der Winterweizen- und Sommerweizenpflanzen in der Kontroll-Variante ausreichend gewesen sein.

Tabelle 4: Einfluss einer P-Düngung mit verschiedenen P-Formen auf den Stroh- und Kornertrag von Mais, Winterweizen und Sommergerste

Trockenmasseertrag Stroh Containerversuch g*Container ⁻¹ ±Standardfehler								
	2020	2021	2022					
	Silomais	Winterweizen	Sommergerste					
Kontrolle P0	135,9 ±1,38ª	115,4 ±4,36 ^a	131,7 ±3,40 ^a					
Hyperphos 20kgP	150,1 ±8,02 ^{ab}	123,2 ±2,1 ^a	132,3 ±5,06 ^ª					
Hyperphos 40kgP	169,4 ±6,90 ^b	126,9 ±1,67ª	141,0 ±1,75 ^ª					
Recphos 20kgP	204,8 ±3,21 ^c	123,4 ±2,18 ^ª	134,1 ±3,23 ^ª					
Recphos 40kgP	280,7 ±8,82 ^e	125,2 ±0,91 ^ª	138,3 ±1,25ª					
TSP 20kgP	230,7 ±4,50 ^d	125,1 ±0,56 ^ª	133,9 ±0,94 ^ª					
TSP 40kgP	332,5 ±11,06 ^f	120,9 ±1,10 ^ª	142,8 ±1,83 ^ª					
Euphore 20kgP	166,0 ±5,75 ^b	127,8 ±1,43 ^ª	132,7 ±2,15 ^ª					
Euphore 40kgP	221,4 ±3,87 ^d	124,0 ±1,57 ^a	138,7 ±4,28 ^ª					

Trockenmasseertrag Korn Containerversuch g*Container ⁻¹ ±Standardfehler									
	2020	2021	2022						
	Silomais	Winterweizen	Sommergerste						
Kontrolle P0	179,8 ±9,12 ^ª	93,7 ±1,78 ^a	108,4 ±3,12 ^a						
Hyperphos 20kgP	180,2 ±15,86 ^{ab}	100,7 ±0,50 ^ª	110,3 ±4,1 ^ª						
Hyperphos 40kgP	243,2 ±15,82 ^{bc}	101,9 ±0,29 ^a	117,1 ±1,30 ^ª						
Recphos 20kgP	262,2 ±14,13 ^c	100,9 ±0,52 ^ª	112,0 ±3,08ª						
Recphos 40kgP	307,6 ±21,79 ^{cd}	104,3 ±2,86 ^a	115,9 ±0,95°						
TSP 20kgP	288,3 ±19,17 ^{cd}	104,1 ±0,63 ^ª	111,5 ±0,70 ^ª						
TSP 40kgP	348,2 ±12,69 ^d	102,3 ±1,15 ^ª	118,5 ±1,05 ^ª						
Euphore 20kgP	224,9 ±15,08 ^{abc}	104,7 ±2,03 ^a	109,8 ±1,64 ^ª						
Euphore 40kgP	250,9 ±12,92 ^{bc}	100,1 ±1,40 ^a	114,9 ±3,54 ^ª						

2.2.1 Schwermetallkonzentrationen in den Pflanzen

In den folgenden Tabellen sind die Schwermetallkonzentrationen in den Stroh- und Kornproben in Abhängigkeit der P-Düngung und der gedüngten P-Form dargestellt. An dieser Stelle sei noch auf die EU-Grenzwerte für bestimmte Elemente gemäß der EU-Verordnung 2023/915 [1] hingewiesen:

0,10 mg Cadmium/kg TM-Getreidekorn

0,15 mg Arsen/kg TM geschliffene Reiskörner

0,20 mg Pb/kg TM-Getreidekorn

Durch die P-Düngung war kein signifikanter Effekt auf die Arsen-Konzentrationen im Stroh der geernteten Pflanzen zu beobachten. Die analysierten Werte lagen unter dem EU-Grenzwert für geschliffene Reiskörner von 0,15 mg As/kg TM, s. Tab. 5. Da die Arsen-Konzentrationen in den Kornproben unter der Nachweisgrenze der hier verwendeten Messtechnik lagen, können keine Werte für die Kornproben dargestellt werden.

As-Konzentration Stroh Containerversuch mg*kg-1 ±Standardfehler								
	2020 Silomais		2021 Winterweizen		2022 Sommergerste			
Kontrolle P0	0,094	±0,017ª	0,038	±0,002ª	0,069	±0,003ª		
Hyperphos 20kgP	0,118	±0,008ª	0,054	±0,002°	0,062	±0,006ª		
Hyperphos 40kgP	0,107	±0,011ª	0,045	±0,002 ^b	0,074	±0,006ª		
Recphos 20kgP	0,103	±0,012ª	0,055	±0,001°	0,070	±0,002ª		
Recphos 40kgP	0,103	±0,014ª	0,048	±0,001 ^{bc}	0,074	±0,003ª		
TSP 20kgP	0,097	±0,008ª	0,067	±0,007 ^{cd}	0,076	±0,007ª		
TSP 40kgP	0,123	±0,020ª	0,063	±0,004 ^{cd}	0,101	±0,012ª		
Euphore 20kgP	0,121	±0,018ª	0,072	0,005 ^d	0,062	±0,005ª		
Euphore 40kgP	0,113	±0,021 ^a	0,079	±0,008 ^d	0,067	±0,006ª		

Tabelle 5: Einfluss der P-Düngung und P-Form auf die Arsen-Konzentration im Stroh von Mais, Winterweizen und Sommergerste

Cd-Konzentration Stroh Containerversuch mg*kg-1 ±Standardfehler								
	2020 Silomais		2021 Winterweizen		2022 Sommergerste			
Kontrolle P0	0,047	±0,003 ^{ab}	0,028	±0,002ª	0,021	±0,002ª		
Hyperphos 20kgP	0,045	±0,005 ^{ab}	0,032	±0,002ª	0,038	±0,012ª		
Hyperphos 40kgP	0,052	±0,002ª	0,037	±0,007ª	0,035	±0,007ª		
Recphos 20kgP	0,040	±0,001 ^{ab}	0,030	±0,002ª	0,029	±0,009ª		
Recphos 40kgP	0,045	±0,007 ^{ab}	0,027	±0,001ª	0,021	±0,001ª		
TSP 20kgP	0,044	±0,002 ^{ab}	0,032	±0,001ª	0,023	±0,001ª		
TSP 40kgP	0,035	±0,002 ^b	0,036	±0,001ª	0,035	±0,006ª		
Euphore 20kgP	0,043	±0,002 ^{ab}	0,036	±0,008ª	0,024	±0,006ª		
Euphore 40kgP	0,033	±0,001 ^b	0,029	±0,002ª	0,017	±0,002ª		

Tabelle 6: Einfluss der P-Düngung und P-Form auf die Cadmium Konzentration im Stroh von Mais, Winterweizen und Sommergerste

Auch beim Cadmium war kein signifikanter Effekt der P-Düngung und P-Form auf die Konzentrationen im Stroh der geernteten Pflanzen zu beobachten. Da die Cadmium-Konzentrationen in den Kornproben unter der Nachweisgrenze der hier verwendeten Messtechnik lagen, können keine Werte dargestellt werden.

Tabelle 7: Einfluss der P-Düngung und P-Form auf die Chrom-Konzentrationen im Stroh und Korn von Mais, Winterweizen und Sommergerste

Cr-Konzentration Stroh Containerversuch mg*kg-1 ±Standardfehler								
	2020 Silomais	2021 Winterweizen	2022 Sommergerste					
Kontrolle P0	4,70 ±0,62 ^a	5,01 ±0,28ª	2,11 ±0,14 ^c					
Hyperphos 20kgP	5,14 ±0,59 ^a	6,20 ±0,28ª	1,50 ±0,17 ^{abc}					
Hyperphos 40kgP	5,15 ±0,57ª	4,97 ±0,22ª	1,55 ±0,03 ^{ab}					
Recphos 20kgP	5,08 ±0,39ª	5,41 ±0,16ª	1,33 ±0,04 ^{ab}					
Recphos 40kgP	4,96 ±0,59 ^a	5,54 ±0,08ª	1,67 ±0,13 ^{bc}					
TSP 20kgP	4,72 ±0,17 ^a	5,38 ±0,26ª	1,68 ±0,13 ^{bc}					
TSP 40kgP	5,53 ±0,83ª	5,77 ±0,16ª	1,31 ±0,08 ^{ab}					
Euphore 20kgP	6,39 ±0,50ª	6,03 ±0,19ª	0,96 ±0,09ª					
Euphore 40kgP	6,28 ±0,58 ^a	6,01 ±0,21ª	1,58 ±0,32 ^{abc}					

Cr-Konzentration Korn Containerversuch mg*kg-1 ±Standardfehler								
	2020 Silomais		2021 Winterweizen		2022 Sommergerste			
Kontrolle P0	0,23	±0,027 ^a	0,26	±0,024 ^{ab}	0,02	±0,003ª		
Hyperphos 20kgP	0,40	±0,084ª	0,25	±0,015 ^{ab}	0,03	±0,001ª		
Hyperphos 40kgP	0,32	±0,057ª	0,24	±0,017 ^{ab}	0,02	±0,002ª		
Recphos 20kgP	0,22	±0,005ª	0,19	±0,004ª	0,02	±0,001ª		
Recphos 40kgP	0,32	±0,040ª	0,24	±0,026 ^{ab}	0,03	±0,003ª		
TSP 20kgP	0,26	±0,033ª	0,20	±0,030 ^{ab}	0,02	±0,003ª		
TSP 40kgP	0,21	±0,018ª	0,22	±0,005 ^{ab}	0,02	±0,001ª		
Euphore 20kgP	0,19	±0,030 ^a	0,18	±0,026 ^{ab}	0,02	±0,003ª		
Euphore 40kgP	0,19	±0,016 ^a	0,29	±0,017 ^b	0,03	±0,002ª		

In der Tabelle 7 sind die Chrom-Konzentrationen im Stroh und Korn von Mais, Winterweizen und Sommergerste in Abhängigkeit der P-Düngung und P-Form dargestellt. Es fällt auf, dass die Chrom-Konzentration in den Strohproben deutlich höher sind als in den Kornproben. Die höheren Chrom-Konzentrationen im Euphore-Produkt spiegeln sich in angestiegenen Werten im Stroh von Mais und Winterweizen wider. Auch hier ist kein statistisch gesicherter Effekt der Varianten auf die Chrom-Konzentrationen im pflanzlichen Gewebe zu beobachten.

Tabelle 8: Einfluss c	der P-Düngung und F	P-Form auf die	Mangan-Konzentrationen in	n
Stroh und Korn von	Mais, Winterweizen u	and Sommerger	ste	

Mn-Konzentration Stroh Containerversuch mg*kg-1 ±Standardfehler								
	2020 Silomais		2021 Winterweizen		2022 Sommergerste			
Kontrolle P0	76,07	±2,17ª	59 <i>,</i> 94	±1,31 ^{ab}	82,82	±3,11 ^{ab}		
Hyperphos 20kgP	78,58	±3,25 ^{ab}	61,87	±2,34 ^{ab}	77,24	±3,18 ^{ab}		
Hyperphos 40kgP	100,38	±4,48°	56,95	±0,12ª	70,78	±2,09ª		
Recphos 20kgP	84,94	±1,29 ^b	66,01	±1,48 ^b	96,36	±5,29 ^b		
Recphos 40kgP	67,88	±3,62ª	63,89	±1,01 ^b	91,47	±4,06 ^b		
TSP 20kgP	70,06	±3,01ª	65,19	±1,89 ^b	91,44	±2,21 ^b		
TSP 40kgP	71,84	±2,18ª	66,01	±1,49 ^b	89,39	±3,23 ^b		
Euphore 20kgP	75,88	±1,78ª	60,07	±1,96 ^{ab}	81,32	±4,47 ^{ab}		
Euphore 40kgP	70,66	±6,69 ^{ab}	61,15	±1,34 ^{ab}	76,21	±3,67 ^{ab}		

Mn-Konzentration Korn Containerversuch mg*kg-1 ±Standardfehler								
	2020 Silomais		2021 Winterweizen		2022 Sommergerste			
Kontrolle P0	5,12	±0,13ª	35,67	±1,64 ^{abc}	15,21	±0,57ª		
Hyperphos 20kgP	5,08	±0,10ª	36,02	±0,23 ^b	15,49	±0,33ª		
Hyperphos 40kgP	5,52	±0,16ª	33,84	±0,63ª	13,95	±0,18ª		
Recphos 20kgP	5,27	±0,11ª	37,91	±1,07 ^{bc}	15,38	±0,11ª		
Recphos 40kgP	5,38	±0,16ª	37,39	±0,08 ^b	16,77	±0,89ª		
TSP 20kgP	5,07	±0,20ª	40,65	±0,49°	15,68	±0,21ª		
TSP 40kgP	5,31	±0,08ª	40,66	±0,81°	15,49	±0,25ª		
Euphore 20kgP	5,13	±0,16ª	35,70	±1,20 ^{ab}	14,05	±0,20ª		
Euphore 40kgP	5,01	±0,19 ^a	36,73	±0,69 ^b	14,43	±0,51ª		

Die P-Düngung in unterschiedlicher Höhe und die P-Form hatten keinen erkennbaren Effekt auf die Mangan-Konzentrationen im Stroh und Korn der angebauten Kulturen. Auffallend ist die deutlich niedrigere Mangan-Konzentration im Maiskorn im Vergleich zu den Kornproben von Winterweizen und Sommergerste, wobei die Konzentrationen im Weizenkorn doppelt so hoch liegen wie im Sommergerstenkorn, s. Tab. 8.

In 2020 wurde im Stroh und Korn von Mais in den gedüngten Varianten eine im Vergleich zur Kontrollvariante höhere Nickel-Konzentration bestimmt. Dieser Effekt wurde in den darauffolgenden Jahren nicht mehr beobachtet, s. Tab. 9.

Tabelle 9:	Einfluss	der P-Düngung	g und P-Form	auf die	Nickel-Konzentrationen	im
Stroh und	Korn von	Mais, Winterwe	izen und Som	mergerst	te	

Ni-Konzentration Stroh Containerversuch mg*kg-1 ±Standardfehler									
	2020 Silomais	2021 Winterweizen	2022 Sommergerste						
Kontrolle P0	3,12 ±0,46 ^a	3,15 ±0,17ª	1,58 ±0,14 ^{ab}						
Hyperphos 20kgP	3,52 ±0,33ª	3,54 ±0,14 ^a	1,14 ±0,18 ^{ab}						
Hyperphos 40kgP	3,38 ±0,29ª	3,20 ±0,13 ^a	1,08 ±0,12 ^{ab}						
Recphos 20kgP	3,49 ±0,30ª	3,13 ±0,12 ^a	1,00 ±0,07ª						
Recphos 40kgP	4,30 ±0,34ª	3,37 ±0,22ª	1,03 ±0,07 ^{ab}						
TSP 20kgP	3,89 ±0,43ª	3,35 ±0,19ª	0,85 ±0,03ª						
TSP 40kgP	3,38 ±0,34ª	3,67 ±0,11ª	0,88 ±0,23 ^{ab}						
Euphore 20kgP	4,01 ±0,64ª	3,82 ±0,04 ^a	1,55 ±0,14 ^b						
Euphore 40kgP	4,37 ±0,45ª	3,46 ±0,14 ^a	0,67 ±0,16 ^{ab}						

Asche [3] analysierte im Rahmen seiner Dissertation in Getreidestroh-Proben auf neun hessischen Ackerstandorten Ni-Konzentrationen von 0,25 - 5,93 mg Ni/kg TM

Ni-Konzentration Korn Containerversuch mg*kg-1 ±Standardfehler									
	2 Sil	2020 omais	2 Winte	2021 erweizen	2022 Sommergerste				
Kontrolle P0	0,02	±0,02ª	0,61	±0,05ª	1,43	±0,19ª			
Hyperphos 20kgP	0,09	±0,02ª	0,66	±0,17ª	0,87	±0,03ª			
Hyperphos 40kgP	0,05	±0,02ª	0,49	±0,04ª	0,94	±0,06ª			
Recphos 20kgP	0,04	±0,03ª	0,74	±0,14 ^a	1,07	±0,03ª			
Recphos 40kgP	0,11	±0,03ª	0,67	±0,06ª	1,28	±0,04ª			
TSP 20kgP	1,18	±0,22 ^b	0,59	±0,01ª	0,97	±0,06ª			
TSP 40kgP	0,74	±0,11 ^b	0,77	±0,08ª	1,47	±0,22ª			
Euphore 20kgP	1,11	±0,20 ^b	0,71	±0,09 ^a	1,42	±0,08ª			
Euphore 40kgP	1,23	±0,38 ^b	0,70	±0,10 ^a	1,22	±0,12 ^ª			

Asche [3] analysierte im Rahmen seiner Dissertation in Getreidekorn-Proben auf neun hessischen Ackerstandorten Ni-Konzentrationen von 0,25 - 1,69 mg Ni/kg TM

Die von uns gemessenen Nickel-Konzentrationen im Stroh und Korn von Mais, Winterweizen und Sommergerste befinden sich aber durchaus in zuvor in Getreideproben von neun hessischen Ackerstandorten gemessenen Nickel-Konzentrationen (Asche, 1997 [3]).

Cu-Konzentration Stroh Containerversuch mg*kg-1 ±Standardfehler									
	2020 Silomais		2021 Winterweizen		2022 Sommergerste				
Kontrolle P0	4,54	±0,19ª	1,66	±0,05ª	3,64	±0,30ª			
Hyperphos 20kgP	4,73	±0,68ª	1,63	±0,04ª	3,19	±0,06ª			
Hyperphos 40kgP	6,25	±0,76ª	1,58	±0,06ª	2,78	±0,07ª			
Recphos 20kgP	4,22	±0,12ª	1,64	±0,05ª	3,24	±0,04ª			
Recphos 40kgP	3,88	±0,36ª	1,53	±0,02ª	3,15	±0,09ª			
TSP 20kgP	4,00	±0,46ª	1,74	±0,15ª	2,88	±0,09ª			
TSP 40kgP	3,15	±0,13ª	1,61	±0,03ª	3,29	±0,37ª			
Euphore 20kgP	4,22	±0,22ª	1,64	±0,10ª	2,63	±0,09 ^a			
Euphore 40kgP	3,52	±0,37ª	1,67	±0,05ª	2,85	±0,16ª			

Tabelle 10: Einfluss der P-Düngung und P-Form auf die Kupfer-Konzentrationen im Stroh und Korn von Mais, Winterweizen und Sommergerste

Cu-Konzentration Korn Containerversuch mg*kg-1 ±Standardfehler										
	2 Sil	2020 omais	2 Winte	021 erweizen	2022 Sommergerste					
Kontrolle P0	2,17	±0,10 ^a	3,80	±0,35ª	5,87	±0,29ª				
Hyperphos 20kgP	1,68	±0,11ª	3,02	±0,07ª	5,81	±0,15ª				
Hyperphos 40kgP	1,99	±0,18	3,22	±0,14ª	5,48	±0,15ª				
Recphos 20kgP	2,58	±0,27ª	3,26	±0,24ª	5,88	±0,30ª				
Recphos 40kgP	1,57	±0,10 ^ª	3,10	±0,06ª	5,97	±0,26ª				
TSP 20kgP	1,66	±0,15ª	3,19	±0,02ª	5,59	±0,10ª				
TSP 40kgP	1,73	±0,27ª	3,45	±0,01ª	6,44	±0,63ª				
Euphore 20kgP	1,32	±0,06ª	3,27	±0,20ª	5,62	±0,08ª				
Euphore 40kgP	1,50	±0,15ª	3,17	±0,07ª	5,64	±0,20ª				

Obwohl durch die Euphore-Applikation mehr Kupfer gedüngt wurde, blieben die Kupfer-Konzentrationen in den Stroh- und Kornproben von Mais, Winterweizen und Sommergerste unbeeinflusst, s. Tab. 10.

Infolge der P-Düngung mit den verschiedenen Produkten und insbesondere mit den P-Rezyklaten, die relativ hohe Zink-Konzentrationen aufweisen, s. Tab. 3, ist kein Einfluss dieser Produkte auf die Zink-Konzentrationen im Stroh und Korn der angebauten Pflanzen zu erkennen, s. Tab. 11.

Zn-Konzentration Stroh Containerversuch mg*kg-1 ±Standardfehler									
	2020 Silomais		20 Winter)21 rweizen	2022 Sommergerste				
Kontrolle P0	46,40	±2,10ª	28,86	±1,37ª	89,26	±3,04ª			
Hyperphos 20kgP	50,85	±2,03ª	26,35	±0,63ª	101,40	±4,14ª			
Hyperphos 40kgP	54,79	±4,23ª	27,09	±0,48ª	83,44	±5,84ª			
Recphos 20kgP	45,74	±0,83ª	29,07	±0,54ª	92,18	±4,28ª			
Recphos 40kgP	40,12	±1,99ª	28,34	±0,24ª	87,50	±3,38ª			
TSP 20kgP	40,83	±3,10ª	28,41	±0,36ª	92,29	±1,33ª			
TSP 40kgP	40,43	±2,22ª	28,89	±0,58ª	86,28	±4,63ª			
Euphore 20kgP	44,16	±2,34ª	28,99	±0,82ª	99,38	±5,22ª			
Euphore 40kgP	42,87	±2,03ª	29,19	±0,66ª	86,00	±5,09ª			

Tabelle 11: Einfluss der P-Düngung und P-Form auf die Zink-Konzentrationen im Stroh und Korn von Mais, Winterweizen und Sommergerste

Zn-Konzentration Korn C	ontainer	ersuch mg	*kg-1 ±	Standardfel	nler		
	2020 Silomais		2 Winte	2021 erweizen	2022 Sommergerste		
Kontrolle P0	14,40	±0,63ª	30,49	±0,68 ^{bc}	54,05	±3,24ª	
Hyperphos 20kgP	13,75	±0,39ª	26,19	±0,36ª	56,87	±1,62ª	
Hyperphos 40kgP	14,24	±0,58ª	26,98	±0,43ª	51,92	±1,70ª	
Recphos 20kgP	14,79	±0,06ª	29,21	±1,10 ^{abc}	53,56	±0,61ª	
Recphos 40kgP	14,80	±0,48ª	28,33	±0,34 ^{ab}	58,34	±3,01ª	
TSP 20kgP	15,25	±0,28ª	30,43	±0,35 ^{bc}	53,93	±0,40 ^ª	
TSP 40kgP	14,77	±0,31ª	31,87	±0,75°	52,09	±0,57ª	
Euphore 20kgP	14,35	±0,24ª	27,75	±0,82 ^{ab}	52,86	±1,09ª	
Euphore 40kgP	14,88	±0,53ª	28,54	±0,61 ^{abc}	54,05	±2,36ª	

2.2.2 Schwermetallfrachten

In der Tabelle 12 sind die Frachten an Phosphor und Schwermetallen dargestellt. Es fällt auf, dass insbesondere durch die P-Düngung in Form des Euphore-Produktes deutlich mehr Zink, Kupfer und Nickel appliziert werden. Interessanterweise wird deutlich weniger Cadmium durch die P-Recyclingprodukte eingetragen als durch die Mineraldünger Hyperphosphat und TSP, s. Tab. 11.

Tabelle 12: Einfluss einer Phosphordüngung in Form verschiedener Produkte auf Frachten von Phosphor, Zink, Kupfer, Nickel und Cadmium in einem 3-jährigen Containerversuch, 2020 – 2022. Es zeigt die in drei Jahren gedüngte P-Menge sowie die mit den P-Düngemitteln applizierten Schwermetallmengen

Element	kg P/ha	kg P/ha Hyperph. TSP Recphos		Euphore	Düngung ¹		
		g/ha	g/ha	g/ha	g/ha	kg/ha	_
Zink	80	232	236	816	1268	10 - 15	
	140	406	413	1428	2219	5 - 8	
Kupfer	80	12	16	348	868	5 - 10	
	140	21	28	669	1519		
Nickel	80	8	16	28	132		
	140	14	28	49	231		
Cadmium	80	10	10	0,8	3,2		
	140	17	18	1,4	5,6		

1 Für schwere Böden werden 10-15 kg Zn/ha und für leichte Böden 5-8 kg Zn/ha pro Jahr sowie 5 – 10 kg Cu/ha empfohlen, um den Bedarf der wichtigsten landwirtschaftlichen und gartenbaulichen Kulturen zu decken [2]

Vergleicht man aber die mit den P-Düngemitteln eingetragenen Zink- und Kupfermengen mit der von Mengel [2] empfohlenen Zink- und Kupfer-Düngung so wird sehr deutlich, dass die empfohlene Zink- und Kupfer-Düngungsmengen über den in drei Jahren eingetragenen Mengen liegen. Demzufolge kann im Prinzip ein Teil des Zink- und Kupferbedarfs der Pflanzen durch das hier eingesetzte Euphore-Produkt gedeckt werden.

Auffallend sind die im Vergleich zu den anderen Produkten gemessenen Nickelfrachten in den Euphore-Varianten, s. Tab. 12. Obwohl Nickel auch zu den Pflanzennährstoffen zählt, wird Nickel eigentlich nicht gedüngt. Nickel ist Bestandteil der Urease, welches Harnstoff zu NH₃ und CO₂ umwandelt. Demzufolge benötigen Pflanzen bei einer Stickstoffernährung mit Harnstoff auch Nickel, um den Harnstoff "verfügbar" zu machen.

In der Tabelle 13 ist eine Nickelbilanz für den 3-jährigen Versuchszeitraum im Containerexperiment dargestellt. Dabei wurde die Ni-Konzentration in den Korn- und Strohproben mit der entsprechenden Korn- und Strohmasse multipliziert, um die Nickelaufnahme der angebauten Kulturen zu berechnen. Tabelle 13: Einfluss einer Phosphordüngung in Form verschiedener Produkte auf die Nickel-Bilanz (Import – Export) in einem 3-jährigen Containerversuch, 2020 – 2022. Es zeigt die in drei Jahren gedüngte P-Menge sowie die mit den P-Düngemitteln applizierte Nickelmenge (Import) sowie die von den Pflanzen aufgenommene Nickelmenge (Export)

P-Düngung kg P/ha	Ni-Import g Ni/ha	Mais g Ni/ha	Winterweizen g Ni/ha	Sommergerste g Ni/ha	Ni-Export g Ni/ha	Ni-Netto- Export ¹ g Ni/ha
P0	0	27	26	23	76	
Ну. 80	8	34	32	15	81	+ 5
140	14	37	29	16	82	+ 6
TSP 80	16	77	30	14	121	+ 45
140	28	86	32	19	137	+ 61
Rec 80	28	46	29	16	91	+ 15
140	49	78	31	18	127	+ 51
Euph 80	132	57	35	23	115	+ 39
140	231	80	31	15	126	+ 50

1 Ni-Netto-Export = Ni-Export der gedüngten Variante – Ni-Export der PO-Variante

Wie bereits erwähnt wurde, wird durch die P-Düngung mit dem Euphore-Produkt die höchste Nickelmenge in den drei Jahren eingetragen. Vergleicht man nun diesen Nickel-Import mit dem Nickel-Netto-Export, so liegt der Nickel-Netto-Export unter dem Nickel-Import. Dieses bedeutet, dass der Boden mit Nickel angereichert wird. Ob dadurch Nahrungsmittel mit Nickel kontaminiert werden könnten, sei dahingestellt bzw. kann nicht eindeutig beantwortet werden, da die Pflanzen in den Euphore-Varianten auch nicht mehr Nickel aufgenommen haben als in den Varianten mit einer TSP- oder Recphos-Düngung.

2.3. Feldversuche

Die von uns gemessenen Arsen-, Cadmium- und Thallium-Konzentrationen in den generativen Pflanzenproben lagen unter unserer analytischen Nachweisgrenze, so dass wir davon absehen, die Ergebnisse darzustellen. Dieser Befund zeigt aber auch, dass von dem P-Recyclingprodukt keine Kontamination der angebauten Kulturen mit den genannten Elementen zu erwarten ist.

Auch bei der Bestimmung der Chrom-Konzentrationen konnten nicht in allen zur Verfügung stehenden Proben eine Konzentration gemessen werden, die über unserer analytischen Nachweisgrenze lag. Für die Standorte Villmar, Langgöns und Münchholzhausen sind Ergebnisse der Chrom-Analysen dargestellt. Es zeigt sich, dass eine P-Düngung mit Hyperphos, TSP oder Recphos keinen Einfluss auf die Chrom-Konzentrationen der untersuchten Pflanzen hat, s. Tab. 14.

Tabelle 14: Einfluss einer P-Düngung und P-Form auf die	Chrom-Konzentrationen in
den Samen verschiedener Pflanzen in den Feldversuchen	

		Cr-Konzentration mg *kg ⁻¹ ±Standardfehler									
Feldversuche Villmar	Kontrolle Okg P/ha		Hyperphos 20kg P/ha		Recphos 20kg P/ha		Hyperphos 40kg P/ha		Recphos 40kg P/ha		
Winterweizen 2020	0,09	±0,02 ^a	0,03	±0,01ª	0,07	±0,02ª	0,09	±0,03ª	0,04	±0,01ª	
Silomais 2021	3,13	±0,10 ^a	3,68	±0,12ª	3,38	±0,25ª	3,79	±0,64ª	3,85	±0,20 ^a	
Winterroggen 2022	0,05	±0,01 ^a	0,06	±0,01ª	0,05	±0,01 ^a	0,08	±0,02 ^a	0,05	±0,01 ^a	

		Cr-Konzentration mg *kg ⁻¹ ±Standardfehler									
Feldversuche Langgöns	lversuche Kontrolle 0kg Inggöns P/ha		TSP 20kg P/ha		Recphos 20kg P/ha		TSP 40kg P/ha		Recphos 40kg P/ha		
Winterweizen 2022	0,04	±0,01ª	0,07	±0,01ª	0,05	±0,01ª	0,05	±0,01ª	0,03	±0,01ª	

			Cr-k	Conzentra	ition m	ng *kg⁻¹ ±St	andar	dfehler					
Feldversuche Münchholzhausen	Kont	Kontrolle 0kg TSP 20kg Recphos 20kg TSP 40kg Recphos 40kg P/ha P/ha P/ha P/ha P/ha											
Winterweizen 2021	0,29	±0,04 ^{ab}	0,25	±0,01ª	0,30	±0,02 ^{ab}	0,32	±0,01 ^b	0,27	±0,02 ^{ab}			
Winterraps 2022	1,55	1,55 ±0,03 ^a 1,53 ±0,04 ^a 1,86 ±0,14 ^a 1,69 ±0,14 ^a 1,87 ±0,13 ^a											

Tabelle 15: Einfluss einer P-Düngung und P-Form auf die Mangan-Konzentrationen in den Samen verschiedener Pflanzen in den Feldversuchen

			Mn-I	Konzentr	ation m	g *g-1 ±S	tandard	fehler					
Feldversuche Dauborn	Kontro P/	olle Okg /ha	kg P/ha	Recph P/	os 40kg /ha								
Winterweizen 2020	31,93	±0,51ª	32,69	±0,85ª	33,50	±0,78 ^ª	33,73	±1,11ª	34,42	±0,40ª			
Sommergerste 2021	13,88	±0,51ª	14,36	±0,66ª	14,22	±0,22ª	14,25	±0,35ª	13,91	±0,26ª			
Winterweizen 2022	24,34	4,34 ±1,15 ^a 29,53 ±1,46 ^a 28,48 ±0,64 ^a 26,05 ±1,78 ^a 28,88 ±0,43 ^a											

		Mn-Konzentration mg *kg ⁻¹ ±Standardfehler												
Feldversuche Stangenrod	Kontro P/	ontrolle 0kg Recphos 20kg Recphos 40kg P/ha TSP 20kg P/ha P/ha TSP 40kg P/ha P/ha												
Winterweizen 2020	28,23	±0,59ª	25,27	±0,36ª	27,07	±0,50 ^ª	27,93	±1,34ª	28,13	±0,39ª				
Sommergerste 2021	12,18	±0,15ª	12,61	±0,23ª	12,28	±0,25ª	12,43	±0,10 ^a	12,74	±0,06ª				
Winterweizen 2022	24,30	24,30 ±0,41 ^a 23,26 ±0,61 ^a 23,34 ±0,94 ^a 24,76 ±0,76 ^a 25,93 ±0,22 ^a												

		Mn-Konzentration mg *kg ⁻¹ ±Standardfehler											
Feldversuche Villmar	Kontro P/	ontrolle 0kg Hyperphos Recphos 20kg Hyperphos Recphos 40kg P/ha 20kg P/ha P/ha 40kg P/ha P/ha											
Winterweizen 2020	36,08	±0,22 ^a	36,32	±0,73ª	36,27	±0,69ª	33,44	±1,48ª	36,53	±1,10ª			
Silomais 2021	13,23	±0,54ª	12,55	±0,56ª	14,09	±0,68ª	13,87	±0,83ª	14,80	±0,90ª			
Winterroggen 2022	22,14	22,14 ±0,59 ^b 19,18 ±0,25 ^a 21,81 ±1,56 ^{ab} 20,62 ±0,88 ^{ab} 21,39 ±1,10 ^{ab}											

			Mn-ŀ	Conzentra	ation m	g *kg ⁻¹ ±S	tandard	fehler					
Feldversuche Langgöns	Kontro	ontrolle 0kg Recphos 20kg Recphos 4 P/ha TSP 20kg P/ha P/ha TSP 40kg P/ha P/ha											
Winterweizen 2020	36,74	74 ±1,21 ^a 35,04 ±		±1,47ª	34,28	±2,59ª	34,11	±1,00ª	38,27	±1,32ª			
Körnermais 2021	6,13	±0,13 ^b	5,44	±0,12ª	6,00	±0,41 ^{ab}	6,38	±0,29 ^b	5,08	±0,26ª			
Winterweizen 2022	40,05	40,05 ±0,51 ^a 40,19 ±0,79 ^a 40,31 ±1,00 ^a 39,78 ±0,74 ^a 40,91 ±0,96 ^a											

			Mn-k	Conzentra	ation m	g *kg ⁻¹ ±9	Standar	dfehler					
Feldversuche Münchholzhausen	Kontro P/	ontrolle Okg P/ha TSP 20kg P/ha P/ha TSP 40kg P/ha P/ha											
Körnermais 2020	3,74	4 ±0,06 ^a 4,38 ±0,29 ^a				±0,26 ^a	4,34	±0,23 ^a	3,99	±0,22ª			
Winterweizen 2021	35,74	±1,58ª	48,92	±3,04 ^b	51,39	±0,72 ^b	64,19	±2,66°	54,96	±3,98 ^{bc}			
Winterraps 2022	39,55	39,55 ±1,86 ^a 44,57 ±0,66 ^a 45,35 ±1,29 ^a 43,18 ±0,71 ^a 43,11 ±0,31 ^a											

In der Tabelle 15 sind die Mangan-Konzentrationen in den Samen der geernteten Pflanzen in Abhängigkeit der P-Düngung und P-Form aufgelistet. Im Vergleich zu Winterweizen sind die Mangan-Konzentrationen bei Sommergerste und Mais niedriger. Raps und Winterweizen weisen vergleichbare Konzentrationen auf. Interessanterweise werden auf dem Standort Münchholzhausen die Mangan-Konzentrationen bei Winterweizen und Winterraps signifikant durch eine P-Düngung mit TSP und Recphos erhöht, wobei sich die Konzentrationen in der TSP- und Recphos-Variante nicht untereinander unterschieden. Diese Beobachtung ist interessant, da durch die P-Düngung mit Recphos, welches eine relativ hohe Mangan-Konzentration aufweist (s. Tab. 3) eigentlich höhere Mangan-Konzentrationen erzielt werden können. Auf den anderen Standorten sind diese Ergebnisse nicht aufgetreten.

Der Tabelle 16 sind die Nickel-Konzentrationen zu entnehmen. Im Vergleich zum Containerversuch ist kein Einfluss von P-Düngung und P-Form auf die Nickel-Konzentrationen in den drei Jahren und auf allen Standorten zu beobachten.

Tabelle 16: Einfluss einer P-Düngung und P-Form auf die Nickel-Konzentrationen in	
den Samen verschiedener Pflanzen in den Feldversuchen	

			Ni-l	Konzentra	tion mg	g *kg ⁻¹ ±St	andard	lfehler					
Feldversuche Dauborn	Kontı P	ontrolle 0kg Recphos 20kg Recphos 40kg P/ha TSP 20kg P/ha P/ha TSP 40kg P/ha P/ha											
Winterweizen 2020	0,16	5 ±0,10 ^a 0,64 ±0,38 ^q			0,13	±0,06ª	0,68	±0,31ª	0,70	±0,19 ^a			
Sommergerste 2021	0,83	±0,13 ^a	1,16	±0,18 ^a	0,63	±0,17ª	0,72	±0,08ª	0,72	±0,10 ^a			
Winterweizen 2022	0,27	0,27 ±0,11 ^a 0,05 ±0,07 ^a -0,01 ±0,05 ^a 0,09 ±0,10 ^a 0,43 ±0,22 ^a											

			Ni-ł	Konzentra	tion m	g *kg ⁻¹ ±St	tandaro	dfehler					
Feldversuche Stangenrod	Konti F	ontrolle 0kg Recphos 20kg Recphos 40 P/ha TSP 20kg P/ha P/ha TSP 40kg P/ha P/ha											
Winterweizen 2020	0,21	21 ±0,04 ^a (±0,34ª	0,18	±0,10 ^a	0,55	±0,24ª	0,29	±0,15ª			
Sommergerste 2021	0,49	±0,11ª	0,45	±0,03ª	0,58	±0,08ª	0,52	±0,07ª	0,53	±0,16ª			
Winterweizen 2022	0,87	0,87 ±0,24 ^a 0,77 ±0,24 ^a 0,50 ±0,17 ^a 0,90 ±0,44 ^a 0,88 ±0,41 ^a											

			Ni-ł	Konzentra	tion m	g *kg⁻¹ ±St	andar	dfehler						
Feldversuche Villmar	Konti P	ontrolle 0kg Hyperphos Recphos 20kg Hyperphos Recphos 40kg P/ha 20kg P/ha P/ha 40kg P/ha P/ha												
Winterweizen 2020	0,61	±0,22ª	0,85	±0,25ª	0,55	±0,17ª	0,22	±0,03ª	0,46	±0,10 ^a				
Silomais 2021	2,30	±0,08ª	2,61	±0,11ª	2,60	±0,23ª	2,71	±0,46 ^a	2,81	±0,13 ^a				
Winterroggen 2022	0,68	0,68 ±0,13 ^a 0,51 ±0,09 ^a 0,24 ±0,03 ^a 0,56 ±0,11 ^a 0,30 ±0,08 ^a												

		Ni-Konzentration mg *kg ⁻¹ ±Standardfehler											
Feldversuche Langgöns	Konti P	ontrolle 0kg P/ha TSP 20kg P/ha P/ha TSP 40kg P/ha P											
Winterweizen 2020	0,61	±0,22 ^a 0,8		±0,25ª	0,55	±0,17ª	0,22	±0,03ª	0,46	±0,10 ^a			
Körnermais 2021	0,37	±0,05ª	0,33	±0,02 ^a	0,42	±0,04ª	0,32	±0,02ª	0,45	±0,11ª			
Winterweizen 2022	0,54	0,54 ±0,13 ^a 0,68 ±0,21 ^a 0,50 ±0,21 ^a 0,67 ±0,22 ^a 0,64 ±0,26 ^a											

		Ni-Konzentration mg *kg ⁻¹ ±Standardfehler											
Feldversuche Münchholzhausen	Konti	ontrolle 0kg P/ha TSP 20kg P/ha P/ha TSP 40kg P/ha P/ha											
Körnermais 2020	1,23	±0,14ª	1,25	±0,57ª	1,50	±0,21ª	1,06	±0,12ª	1,37	±0,25ª			
Winterweizen 2021	1,15	±0,13ª	0,94	±0,17ª	1,06	±0,20ª	1,08	±0,16ª	0,98	±0,23ª			
Winterraps 2022	1,99	1,99 ±0,19 ^a 1,56 ±0,12 ^a 1,63 ±0,19 ^a 1,20 ±0,18 ^a 1,63 ±0,11 ^a											

Asche (1997) analysierte in seinen Getreidekorn-Proben auf neun hessischen Ackerstandorten: 0,25 - 1,69 mg Ni/kg TM

Bei einigen Proben war es möglich die Blei-Konzentrationen zu messen, s. Tab. 17. Auch hier zeigt sich kein Einfluss von P-Düngung und P-Form auf die Blei-Konzentrationen.

Tabelle 17: Einfluss einer P-Düngung und P-Form auf die Blei-Konzentrationen in den Samen verschiedener Pflanzen in den Feldversuchen

			Pb-	Konzentra	ation m	g *g⁻¹ ±St	andard	fehler		
Feldversuche Dauborn	Kontr	Kontrolle 0kgRecphos 20kgRecphos 40kgP/haTSP 20kg P/haP/haTSP 40kg P/ha								
Sommergerste 2021	0,100	0,100 ±0,013 ^a 0,063 ±0,007 ^a 0,064 ±0,009 ^a 0,074 ±0,001 ^a 0,049 ±0,009 ^a								

			Pb-	Konzentra	ation m	g *g⁻¹ ±St	andard	fehler		
Feldversuche Villmar	Kontr P	olle 0kg /ha	DkgHyperphosRecphos 20kgHyperphosRecphos 40kg20kg P/haP/ha40kg P/haP/ha							os 40kg /ha
Silomais 2021	0,081	±0,018 ^a 0,067 ±0,008 ^a 0,074 ±0,011 ^a 0,082 ±0,014 ^a 0,096 ±0,02						±0,013ª		

Durch die P-Düngung und insbesondere durch die P-Form werden die Kupfer-Konzentrationen in den generativen Pflanzenteilen auf allen Standorten und in allen drei Versuchsjahren nicht beeinflusst, s. Tab. 18.

Tabelle 18: Einfluss einer P-Düngung und P-Form auf die Kupfer-Konzentrationen in den Samen verschiedener Pflanzen in den Feldversuchen

			Cu-	Konzentra	ation m	ng *g ⁻¹ ±St	andarc	lfehler				
Feldversuche Dauborn	Konti F	ontrolle 0kg P/ha TSP 20kg P/ha P/ha TSP 40kg P/ha										
Winterweizen 2020	4,60	±0,26ª	4,41	±0,28 ^a	4,45	±0,21ª	4,46	±0,14ª	4,37	±0,21ª		
Sommergerste 2021	6,16	±0,47ª	5,96	±0,17ª	5,74	±0,32ª	5,44	±0,38ª	5,52	±0,39ª		
Winterweizen 2022	3,62	3,62 ±0,23 ^a 3,34 ±0,26 ^a 3,31 ±0,24 ^a 3,07 ±0,24 ^a								±0,24 ^a		

			Cu-	Konzentr	ation n	ng *kg⁻¹ ±S	tandar	dfehler				
Feldversuche Stangenrod	Konti F	ontrolle 0kg TSP 20kg Recphos 20kg TSP 40kg Recphos P/ha P/ha P/ha P/ha P/ha P/ha										
Winterweizen 2020	3,40	±0,10 ^a	3,08	±0,07ª	3,43	±0,18 ^a	3,37	±0,22ª	3,44	±0,08 ^a		
Sommergerste 2021	3,87	±0,10 ^a	3,89	±0,19 ^a	3,65	±0,05ª	3,47	±0,13 ^a	3,75	±0,12ª		
Winterweizen 2022	3,24	±0,03 ^b	2,87	±0,12 ^a	3,15	±0,09 ^{ab}	2,78	±0,09 ^a	3,05	±0,04 ^{ab}		

			Cu-l	Konzentra	ition m	g *kg-1 ±S	tandar	dfehler				
Feldversuche Villmar	Konti P	ontrolle 0kg Hyperphos Recphos 20kg Hyperphos Recphos 4 P/ha 20kg P/ha P/ha 40kg P/ha P/ha										
Winterweizen 2020	3,51	±0,05ª	3,67	±0,10 ^a	3,57	±0,10 ^a	3,64	±0,03ª	3,82	±0,10ª		
Silomais 2021	2,64	±0,07ª	3,07	±0,31ª	2,74	±0,08 ^a	2,98	±0,18ª	3,47	±0,31ª		
Winterroggen 2022	3,64	3,64 ±0,12 ^a 3,52 ±0,06 ^a 3,44 ±0,21 ^a 3,44 ±0,04 ^a 3,65 ±										

			Cu-ł	Konzentra	tion m	g *kg-1 ±S	tandar	dfehler					
Feldversuche Langgöns	Kontı P	ontrolle 0kg P/ha TSP 20kg P/ha P/ha TSP 40kg P/ha P/ha											
Winterweizen 2020	3,61	±0,18ª	3,69	±0,15ª	3,46	±0,23ª	3,49	±0,10 ^ª	3,76	±0,15ª			
Körnermais 2021	3,39	±0,14ª	3,26	±0,17ª	3,24	±0,13ª	3,32	±0,14ª	2,95	±0,13ª			
Winterweizen 2022	3,64	3,64 ±0,04 ^a 3,62 ±0,06 ^a 3,69 ±0,10 ^a 3,46 ±0,04 ^a 3,57											

			Cu	Konzentr	ation	mg *kg⁻¹ ±S	Standa	rdfehler				
Feldversuche Münchholzhausen	Konti	ntrolle 0kg TSP 20kg Recphos 20kg P/ha P/ha P/ha P/ha TSP 40kg P/ha P/ha										
Körnermais 2020	$2,61$ $\pm 0,39^{a}$ $1,73$ $\pm 0,53^{a}$ $2,59$ $\pm 0,11^{a}$ $2,31$ $\pm 0,$							±0,14ª	2,16	±0,08ª		
Winterweizen 2021	4,82	±0,08 ^b	4,27	±0,09 ^a	4,69	±0,25 ^{ab}	4,53	±0,10 ^{ab}	4,04	±0,10 ^a		
Winterraps 2022	3,62	$62 \pm 0.12^{\circ}$ 3.25 $\pm 0.06^{\circ}$ 3.30 $\pm 0.07^{\circ}$ 3.04 $\pm 0.18^{\circ}$ 3.46 $\pm 0.18^{\circ}$										

Durch die P-Düngung und P-Form wird die Zink-Konzentration bei Winterweizen in 2020 auf dem Standort Dauborn signifikant im Vergleich zur Kontroll-Variante erhöht, wobei dieses aber nicht negativ sein dürfte, da der ernährungsphysiologische Wert verbessert wird, s. Tab. 19. In den folgenden Jahren ist dieser Effekt auch auf den anderen Standorten und Jahren nicht mehr zu beobachten.

Tabelle 19: Einfluss einer P-Düngung und P-Form auf die Zink-Konzentrationen in den Samen verschiedener Pflanzen in den Feldversuchen

			Zn-k	Conzentra	ation m	g *kg ⁻¹ ±S	tandard	lfehler		
Feldversuche Dauborn	Kontro P/	olle Okg /ha	TSP 20	g P/ha P/ha						
Winterweizen 2020	24,27	±0,34ª	27,44	±0,42 ^b	26,45	±1,63 ^{ab}	25,69	±1,09 ^{ab}	27,15	±0,63 ^b
Sommergerste 2021	24,58	±0,68ª	25,84	±0,26ª	24,62	±0,70 ^a	23,82	±0,73ª	24,22	±0,44ª
Winterweizen 2022	18,80	±0,89 ^a	20,03	±0,63ª	18,59	±1,09ª	17,40	±0,91ª	17,95	±0,30 ^a

			Zn-K	onzentra	tion mg	; *kg ⁻¹ ±S	tandard	fehler					
Feldversuche Stangenrod	Kontro P/	ntrolle 0kg P/ha TSP 20kg P/ha P/ha TSP 40kg P/ha P/ha											
Winterweizen 2020	15,59	±0,60ª	13,90	±0,34ª	14,79	±0,96ª	14,63	±1,06ª	15,55	±0,60 ^a			
Sommergerste 2021	19,54	±0,35ª	19,38	±1,01ª	18,30	±0,52ª	17,84	±0,63ª	19,16	±0,26ª			
Winterweizen 2022	15,70	15,70 ±0,35° 14,52 ±0,96° 15,70 ±0,81° 15,65 ±0,61° 1											

			Zn-K	onzentra	tion mg	;*kg ⁻¹ ±St	tandard	fehler				
Feldversuche Villmar	Kontro P/	ontrolle 0kg Hyperphos Recphos 20kg Hyperphos Recphos P/ha 20kg P/ha P/ha 40kg P/ha P/h										
Winterweizen 2020	23,58	±0,41ª	24,23	±0,52ª	24,47	±0,73ª	23,41	±0,28 ^a	24,26	±0,62ª		
Silomais 2021	22,88	±0,49ª	21,90	±0,43ª	21,41	±0,65ª	21,93	±0,25ª	23,17	±0,71ª		
Winterroggen 2022	26,25	6,25 ±1,26 ^a 26,59 ±1,07 ^a 25,74 ±0,63 ^a 23,39 ±1,66 ^a 24,63 ±1,08 ^a										

			Zn-K	onzentra	ition m	g *kg⁻¹ ±St	tandard	fehler		
Feldversuche Langgöns	Kontr	olle 0kg /ha	Recph P	os 40kg /ha						
Winterweizen 2020	21,53	±0,95ª	20,84	±0,94ª	19,64	±1,24ª	19,43	±0,65ª	20,70	±0,75ª
Körnermais 2021	20,99	±0,81ª	19,18	±0,82ª	19,55	±1,34ª	20,05	±1,32ª	18,03	±1,11ª
Winterweizen 2022	21,09	1,09 ±0,77 ^{ab} 21,54 ±0,35 ^b 20,56 ±0,20 ^{ab} 18,94 ±0,45 ^a 20,42								

			Zn-K	onzentra	tion mg	*kg ⁻¹ ±S	tandard	fehler					
Feldversuche Münchholzhausen	Kontro P/	ontrolle 0kg P/ha TSP 20kg P/ha P/ha TSP 40kg P/ha F											
Körnermais 2020	18,13	±0,96 ^a	16,78	±0,71 ^ª	17,82	±0,11ª	17,19	±0,77 ^a	16,30	±0,57 ^a			
Winterweizen 2021	28,95	±0,28ª	31,52	±1,67ª	30,38	±1,33ª	29,76	±0,51ª	28,44	±1,14ª			
Winterraps 2022	36,05	6,05 ±0,87 ^a 36,97 ±0,73 ^a 37,72 ±1,09 ^a 35,23 ±0,79 ^a											

3 Fazit

Das Ziel der Untersuchungen war es zu untersuchen, ob durch eine P-Düngung mit P-Rezyklaten aus der P-Rückgewinnung aus Klärschlämmen eine Kontamination mit Schwermetallen in Lebensmittel zu beobachten ist. Dazu wurden die Samen von Winterraps, Mais, Winterweizen und Sommergerste aus dreijährigen P-Düngungsversuchen, welche auf fünf mittelhessischen Ackerstandorten und in einem Containerexperiment durchgeführt wurden, auf deren Schwermetallkonzentrationen analysiert. Im Containerexperiment wurden auch die Strohproben analysiert, um eine Schwermetallbilanz zu berechnen. Bei keiner der untersuchten Pflanzenproben wurde eine signifikante Überschreitung der Höchstgehalte gemäß der EU-Verordnung 2023/915 [1] an Cadmium, Arsen und Blei festgestellt.

Hohe Zink-, Kupfer- und Mangan-Konzentrationen in P-Rezyklaten aus Klärschlamm sind eine geeignete Quelle für die Pflanzenernährung mit diesen Elementen.

Aufgrund einer relativ hohen geogenen Nickelbelastung von Klärschlämmen in Mittelhessen reichert sich Nickel in P-Rezyklaten aus derartigen Klärschlämmen an. P-Düngung mit P-Rezyklaten, die eine relativ hohe Nickel-Konzentration aufweisen, ließen die Nickel-Konzentrationen in den vegetativen und generativen Pflanzenteilen nicht stark ansteigen. Aber die Berechnung der Nickel Input-Output-Frachten im dreijährigen Containerexperiment ergab, dass bei einer Applikation eines P-Rezyklates, welches eine hohe Nickel-Konzentration aufwies, der Nickel-Netto-Export (Entzug der Pflanzen) kleiner war als der Nickel-Import durch die P-Düngung. Es bleibt offen, ob durch diesen Nickelüberschuss von 93- bzw. 181 g Ni/ha erhöhte Nickel-Konzentrationen in den Pflanzen zu erwarten sind. Aus diesem Grunde sollte dem Nickel-Transfer in Mittelhessen besondere Aufmerksamkeit geschenkt werden.

4 Literatur

 [1] EU-Verordnung 2023/915 der Kommission vom 25. April 2023 über Höchstgehalte für bestimmte Kontaminanten in Lebensmitteln und zur Aufhebung der Verordnung
 (EG) Nr. 1881 2006

[2] Mengel, K. 1991: Ernährung und Stoffwechsel der Pflanze. Gustav Fischer Verlag Jena

 [3] Asche, E. 1997: Einfluss von Bioabfallkomposten unterschiedlicher Reifegrade auf die Bodenfruchtbarkeit unter besonderer Berücksichtigung der N-Dynamik.
 Dissertation im FB Agrarwissenschaften und Umweltsicherung der Justus-Liebig-Universität Gießen Tabelle 3a: Gesamt P-Konzentration sowie die Schwermetallkonzentrationen der in diesem Projekt verwendeten Düngemittel sowie die P-Rezykalte Recphos und Euphore, P-Rezyklate sowie die Klärschlammaschen aus denen das Recphos hergestellt wurde. Unterschiedliche Farben kennzeichnen unterschiedliche Konzentrationen

Prüfberichte Düngemittel und Aschen Hessisches Landeslabor						
	Hyper-					
Parameter	phosphat	TSP	Recphos	Euphore	Asche 1	Asche 2
Phosphor %	13,700	18,800	15,400	5,860	10,900	6,930
Mangan mg/kg	15,000	33,600	599,000	690,000	880,000	1290,000
Zinn mg/kg	0,250	2,190	70,800	1,130	104,000	164,000
Zink mg/kg	399,000	558,000	1570,000	904,000	2670,000	2790,000
Kupfer mg/kg	17,800	34,100	673,000	618,000	1370,000	654,000
Arsen mg/kg	6,210	5,140	21,400	2,430	15,700	28,200
Blei mg/kg	3,640	8,550	68,200	1,780	86,200	151,000
Chrom mg/kg	152,000	121,000	69,000	170,000	82,400	184,000
Cadmium mg/kg	16,600	24,100	1,510	0,025	2,010	3,630
Quecksilber (Hg)						
mg/kg	0,031	0,017	0,137	0,010	0,040	0,721
Nickel (Ni) mg/kg	15,900	38,500	55,300	93,200	55,200	153,000
Thallium mg/kg	0,806	0,574	0,278	0,025	0,301	0,852
Uran mg/kg	105,000	170,000	6,340	4,860	12,500	7,650